

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Strassen ASTRA

Filiale Zofingen F3

Unterhaltsabschnitt

Autobahnklasse EU-Strassen-Nr.

Projektphase

Filialspezifische Vorlage

Projekt- / Berichtsbezeichnung

ASTRA Filiale Zofingen

SABA

Dichtigkeitsprüfung

Projektkurzbezeichnung Projekt-Nr. / TDCost-Nr.

Inventarobjekt-Nr. Unterhaltskilometer RBBS

Projektverfasser: Dokumenten-Nr. (PV): Doku.-Nr. (ASTRA): 150001 - 52 - 113 HUNZIKER Format: Α4 Tel. 052 234 50 50 Hunziker Betatech AG Fax 052 234 50 99 Pflanzschulstrasse 17 Version: 1.0 8400 Winterthur www.hunziker-betatech.ch 30.10.2020 Erstellt: Datum: sig Projektleitung: Geprüft durch FaS SABA: 30.10.2020 Kurzz.: Bup Bundesamt für Strassen Eingang ASTRA: Kurzz.: Filiale Zofingen Brühlstrasse 3, 4800 Zofingen Freigabe ASTRA: 18.02.2021 Kurzz.: Kor

Impressum

Vertragspartner

Auftragnehmer

Hunziker Betatech AG

Einfach Mehr Ideen Pflanzenschulstrasse 17 8400 Winterthur

Tel.: +41 52 234 50 95

E-Mail: Adrian.Sigrist@hunziker-betatech.ch

Verfasser: Adrian Sigrist

Auftraggeber

Bundesamt für Strassen ASTRA

Filiale Zofingen Brühlstrasse 3 4800 Zofingen

Tel.: +41 58 461 89 42

E-Mail: Paul.Burch@astra.admin.ch

Ansprechperson: Paul Burch

Änderungsverzeichnis

Version	Anpassung / Änderung	Verfasser	Datum
1.0	Definitiv	A. Sigrist / P. Burch	30.10.2020

Verteiler

Firma	Name	Anzahl	l Version				
ASTRA, Filiale Zofingen			1.0				
ASTRA, Filialchef	Richard Kocherhans	1	х				
ASTRA, Bereichsleiter EP	Lorenzo Sabato	1	х				
ASTRA, Bereichsleiter PM Nord	Astrid Behrens	1	х				
ASTRA, Bereichsleiter PM Mitte	Thomas Kloth	1	х				
ASTRA, Bereichsleiter PM Süd	Diego Tschuppert	1	х				
ASTRA, FaS SABA	Paul Burch	1	х				

Allg. Informationen

Dateiname ASTRA:	8596.20-191026-Vorgehenskonzept-Dichtigkeitsprüfung		
Aktuelle Version:	1.0		
Anzahl Seiten:	8		

INHALTSVERZEICHNIS

Dichti	gkeitsprüfung von Retentionsfilterbecken	4
1.	Vorbereitungen Dichtigkeitsprüfung	4
1.1.	Umfang (Anlagenteile)	4
1.2.	Zeitpunkt der Dichtigkeitsprüfung	4
1.3.	Geschlossenes, dichtes System	4
1.4.	Messinstallationen	4
1.5.	Befüllung Retentionsfilterbecken	4
1.6.	Etappierung	5
2.	Arbeitsschritte Dichtigkeitsprüfung	5
2.1.	Phasen der Dichtigkeitsprüfung	5
2.2.	Arbeitsschritte Vorbefüllung (Phase A)	6
2.3.	Arbeitsschritte Dichtigkeitsprüfung und Massnahmen (Phase B/C)	7
3.	Spezialfälle	8
3.1.	Retentionsfilterbecken mit Schilf bewachsen	8

Formulare

- Dichtigkeitsprüfung Schieber, Prüfprotokoll A
- Dichtigkeitsprüfung RFB, Prüfprotokoll B

Dichtigkeitsprüfung von Retentionsfilterbecken

1. Vorbereitungen Dichtigkeitsprüfung

1.1. Umfang (Anlagenteile)

Die Dichtigkeitsprüfung bezieht sich in erster Linie auf Retentionsfilterbecken (RFB), bei welchen die Abdichtung mit Tonmaterialien (Bentonitmatte o.ä.) oder Plastikfolien erfolgt. Dies sind typischerweise Splitt-/Sand- und Bodenfilter. Eine Ausweitung der Dichtigkeitsprüfung auf weitere Anlagenteile (Absetzbecken, Pumpwerke) der Strassenabwasserbehandlungsanlage (SABA) ist nicht vorgesehen und vorgängig mit dem ASTRA zu besprechen.

1.2. Zeitpunkt der Dichtigkeitsprüfung

Bei einem Neubau ist die Dichtigkeitsprüfung direkt nach dem Einbau des Filtermaterials durchzuführen. Handelt es sich um ein mit Schilf bewachsenes RFB, so ist die Dichtigkeitsprüfung **vor** der Bepflanzung mit Schilf durchzuführen.

Die Dichtigkeitsprüfung ist im Frühling oder Herbst zu vollführen. Bei bereits bepflanzten Schilf-Filtern ist der Winter ebenfalls in Betracht zu ziehen, vorausgesetzt die Temperaturen liegen über dem Gefrierpunkt.

1.3. Geschlossenes, dichtes System

Vor der Dichtigkeitsprüfung ist zu gewährleisten, dass ein geschlossenes System des zu prüfenden RFB erstellt werden kann. Dazu ist eine Dichtigkeitskontrolle mit Prüfprotokoll (A) bei fest installierten Schiebern im Ein- und Auslauf sowie bei Verbindungsleitungen durchzuführen. Falls keine festinstallierten Schieber vorhanden sind oder die Schieber undicht sind, kann mit Absperrballone ein temporär geschlossenes System erstellt werden.

1.4. Messinstallationen

Das RFB ist zum Zeitpunkt der Dichtigkeitsprüfung mit einer der folgenden Messtechniken auszurüsten:

- Niveaumessgerät (Radar/Drucksonde): Die verwendeten Geräte weisen eine Messgenauigkeit von +/- 1 mm auf und es besteht die Möglichkeit zur Online-Datenüberwachung. Sofern die Inbetriebnahme (IBN) der SABA bereits erfolgt ist, entspricht dies der Standard-Ausrüstung eines RFB. Bei Dichtigkeitsprüfungen vor der Inbetriebnahme der SABA wird empfohlen, eine mobile Drucksonde mit Datenlogger zu verwenden.
- Messlatte: Die Messlatte wird nur w\u00e4hrend der Dichtigkeitspr\u00fcfung installiert. Die Messlatte wird in jedem Fall zwecks Redundanz und visueller Kontrolle vor Ort als Zweitmessung empfohlen.

1.5. Befüllung Retentionsfilterbecken

Die Retentionsfilterbecken sind für die Dichtigkeitsprüfung bis auf Höhe der Überfallkante im RFB zu befüllen. Ist kein Überfallkante vorgesehen, so erfolgt die Befüllung bis zum maximal erwarteten Wasserspiegel (WSP_{max, RFB}).

Die Befüllung der RFB erfolgt im Idealfall über den natürlichen Zufluss aus dem Einzugsgebiet bei Regenwetter. Falls ein grösseres Gewässer in der Nähe ist, kann Wasser vom Gewässer ins RFB gepumpt werden. Dadurch wird die Prüfung besser planbar. Die Zulässigkeit der Wasserentnahme ist vorgängig mit dem zuständigen kantonalen Amt für Umwelt zu klären. Falls nicht anders möglich, ist ein Wasserbezug ab Hydrant in Absprache mit dem Brunnenmeister zu erwägen.

1.6. Etappierung

Weist die SABA zwei Retentionsfilterbecken (RFB) auf, ist die Dichtigkeitsprüfung in zwei Etappen durchzuführen. Damit wird sichergestellt, dass während der Dichtigkeitsprüfung die Behandlung von Strassenabwasser weiterhin gewährleistet wird (reduzierter Betrieb). Dank der Etappierung kann weiter der Wasserbezug reduziert werden, indem das Wasser für die Dichtigkeitsprüfungen zwischen den beiden RFB gepumpt wird.

Ist eine vollständige Unterbindung des Zuflusses auf die SABA für die Dichtigkeitsprüfung unumgänglich, so wird während der Dichtigkeitsprüfung anfallendes Strassenabwasser unbehandelt in die Gewässer eingeleitet.

2. Arbeitsschritte Dichtigkeitsprüfung

2.1. Phasen der Dichtigkeitsprüfung

Die Dichtigkeitsprüfung kann vereinfacht in drei Phasen unterteilt werden:

- A. Vorbefüllung: Das Becken wird befüllt. Während der Vorbefüllung wird der Filter und Abdichtungsmaterial benetzt, so dass Luft aus dem Filter entweichen und tonige Materialien quillen können. Die Vorbefüllungsdauer beträgt mindestens 24 h. In der Phase A ist Niederschlag unproblematisch. Sollte der WSP auch nach 72 h weiterhin stark sinken, kann auf die eigentliche Dichtigkeitsprüfung (B) verzichtet werden. Die notwendigen Massnahmen (C) sind in Rücksprache mit dem ASTRA zu definieren.
- B. **Dichtigkeitsprüfung**: Aufgrund der gemessenen Niveaudifferenz im Retentionsfilterbecken wird die Dichtigkeit des Beckens beurteilt. Die Dichtigkeitsprüfung dauert 24 h, eine kürzere Dauer kann unter gewissen Voraussetzungen sinnvoll sein (siehe Kapitel 3). Starkniederschlagsereignisse während der Dichtigkeitsprüfung können die Resultate (trotz Referenzbehälter) verfälschen.
- C. **Massnahmen:** Aufgrund der Resultate der Dichtigkeitsprüfung werden in Rücksprache mit dem ASTRA allfällige Sanierungsmassnahmen abgeleitet. Dabei ist zu unterscheiden zwischen:
 - Mängel bei Neubau: Garantieansprüche nach SIA 118
 - Mängel bei bestehenden Bauwerken: Sanierungsmassnahmen

2.2. Arbeitsschritte Vorbefüllung (Phase A)

Arbe	eitsschritt Vorbefüllung	Ziel	Bemerkungen		
A1	Aufstellen/Befüllung Referenz-Plastikbehälter	Berücksichtigung der Verdunstung / Nieder- schlag	Plastikbehälter direkt beim RFB aufstellen. Grundfläche Plastikbehälter (min): 0.5 m² Wassertiefe (min): 30 cm Material: Kunststoff transparent/weiss.		
A2	Installation Radar/Druck- sonde und/oder Mess- latte	Aufzeichnung Wasser- spiegel + Überprüfung Messtechnik.	Bei einer Prüfung vor IBN SABA: Mobile Drucksonden mit Datenlogger und/oder Messlatte verwenden.		
A3	Schieber Auslauf: Geschlossen	Befüllung des RFB bis zum maximalen Wasser- spiegel (WSP _{max, RFB}).	Benetzung vom Filter und Abdichtung inkl. Böschungen. Prüfen, ob eine Befüllung über Pumpen aus nahestehenden Gewässer mög- lich ist.		
A4	Schieber Einlauf: Geschlossen	Konstanter Wasserspiegel im RFB.	Alle Ein- und Abläufe sind geschlossen -> Geschlossenes System RFB. Absperrballone verwenden: Falls Schieber undicht oder nicht vorhanden sind.		
A5	Überwachung Niveau	Interpretation, ob Benetzung des Filters abgeschlossen ist.	Sobald ein konstanter WSP beobachtet wird, ist die Benetzung abgeschlossen.		
A6	Eventuell Wiederbefüllung RFB	Gewährleistung Wasser- spiegel WSP _{max. RFB}	Bei Absenkungen des WSP ≥ 5 mm/h ist nach 10-15 h Stunden der WSP wieder auf die ursprüngliche Kote zu erhöhen.		
A7	Freigabe Dichtigkeitsprüfung oder Wiederholung, ab A3 falls anhand Niveaumessung eine Sättigungskurve erkennbar ist oder Abbruch, falls Wasserspiegel konstant sinkt (-> Dichtigkeit ist nicht gewährleistet)	Verluste durch Benetz- ung können aus- geschlossen oder ver- nachlässigt werden.	Frühestens 24 h nach Start der Befüllung ist der Entscheid zum weiteren Vorgehen zu fällen. Die Erfahrung zeigt, dass trockene Bentonitmatten durchlässig sind. Eine lange Vorbefüllungszeit reduziert die Verlustraten.		

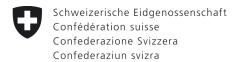
 Tabelle 1:
 Notwendige Arbeitsschritte der Phase A Vorbefüllung.

2.3. Arbeitsschritte Dichtigkeitsprüfung und Massnahmen (Phase B/C)

Vermerk: Wenn das RFB mit Schilf bewachsen ist, werden die Arbeitsschritte gemäss Kapitel 3.1 durchgeführt.

Arbe	itsschritt	Ziel Bemerkungen		
Dich	tigkeitsprüfung		_	
B1	Schieber Ein- und Aus- lauf: Geschlossen	«Konstanter» Wasserspiegel im RFB	Entspricht Schieber-Stellung nach A4. (-> Kontrolle Schieber auf Dichtheit) Idealerweise kein Niederschlag.	
B2	Niveaudifferenz im RFB während 24 h	Berechnung der Gesamtverluste im RFB: $_{\Delta}H_{24h,tot}$	Niveaumessung mit: Messlatte (vor Ort) und/oder Radar/ Sonde (online/Logger). Intervall (Registrierung Messdaten): 1h.	
B3	Niveaudifferenz im Referenz-Plastikbehälter während 24 h.	Berechnung der Verdunstungsverluste im RFB: $_{\Delta}H_{24h,Verd}$	Gleichzeitig mit B2 Messung mit Messlatte Messgenauigkeit 1mm	
B4	Berechnung Verluste	Berechnung der effektiven Verluste im RFB: $_{\Delta}H_{24h}$	Der effektive Verlust ergibt sich aus dem Gesamtverlust minus dem Verdunstungsverlust $_{\Delta}H_{24h}=_{\Delta}H_{24h,tot}\;\text{-}\;_{\Delta}H_{24h,Verd}$	
B5	Interpretation Resultate	Entscheid zum weiteren Vorgehen: ► Dicht → Prüfprotokoll (B) ► Undicht → Weiter mit C ► Unsicher → Zurück zu A3	Zulässige Verluste: △H _{24h} < 40 mm (Eine Bentonitmatte wird als dicht beurteilt, wenn k ≤ 5 x 10 ⁻⁷ m/s): «In 24 h ist eine Wasserspiegelsenkung von bis 40 mm akzeptabel» Bei Anlagen mit direkter Versickerung ins Grundwasser im Gewässerschutzbereich Au gelten strengere Anforderungen (SIA190): Zulässige Verluste: △H _{24h} < 10 mm	
	auf der gleichen SABA wei	tere Dichtigkeitsprüfungen von RFB	durchzuführen, so sind Phase A und B zu	
		Ableitung von Mängelbehebung/ Sanierungsmassnahmen für die SABA.	Neubau: Garantieanspruch nach SIA 118. Bestand: Im Austausch mit dem ASTRA (FaS SABA): Ideen für mögliche Ursachen: ► Rohrdurchdringung Bentonitmatte ► Anschlussdetail Bentonitmatte/Beton ► Überlappung Bentonitmatte bei Verlegung ► Kontrolle von evtl. verschiedenen Bauphasen ► Verluste bei Schieber/Absperr-ballone	

 Tabelle 2:
 Notwendige Arbeitsschritte der Phase B «Dichtigkeitsprüfung» und C «Massnahmen».


3. Spezialfälle

3.1. Retentionsfilterbecken mit Schilf bewachsen

Ist das RFB mit Schilf bewachsen, so sind korrekterweise die Verluste durch die Transpiration des Schilfs zu berücksichtigen. Transpiration ist in der Botanik die Verdunstung von Wasser über die Blätter der Pflanzen. Gemäss Literatur beträgt die jährliche Transpirationsrate von Schilf bis zu 2000 l/m², wobei die Transpirationsrate von einer Vielzahl von Faktoren abhängig ist (Luftfeuchtigkeit, Wind, Sonneneinstrahlung, Temperatur, Wasserverfügbarkeit). Eine parallele Messung, identisch zur Ermittlung der Verdunstungsrate, kann nicht durchgeführt werden. Deshalb wird empfohlen, die Dichtigkeitsprüfung auf 14 h zu verkürzen und in der Nacht (18:00 bis 08:00 Uhr) durchzuführen, da hier tiefere Transpirationsraten erwartet werden. Bei der Interpretation der Resultate ist eine höhe Toleranz aufgrund möglicher Transpirationsverluste zu berücksichtigen.

Arbeitsschritt Dichtigkeitsprüfung		Ziel	Bemerkungen		
B1	Schieber Ein- und Aus- lauf: Geschlossen	«Konstanter» Wasserspiegel im RFB	Entspricht Schieber-Stellung nach A3 (-> Kontrolle Schieberstellung) Warten auf Nacht ohne Regen.		
B2	Niveaudifferenz im RFB während 14 h (18:00 bis 08:00 Uhr).	Berechnung der Gesamtverluste im RFB: ΔH _{14h,tot}	Niveaumessung mit: Messlatte (vor Ort) und Radar/Sonde (online/Logger). Intervall (Registrierung Messdaten): 1h.		
B3	Niveaudifferenz im Referenz-Plastikbehälter während 14 h. (18:00 bis 08:00 Uhr).	Berechnung der Verdunstungsverluste im RFB: ΔH14h,Verd	Gleichzeitig mit B2 Messung mit Messlatte Messgenauigkeit 1mm		
B4	Berechnung Verluste	Effektive Verluste im RFB in der Nacht (während 14 Stunden): ΔH _{14h}	Der effektive Verlust ergibt sich aus dem Gesamtverlust minus dem Verdunstungsverlust $_{\Delta}H_{14h} = _{\Delta}H_{14h,tot}{\Delta}H_{14h,Verd}$		
B5	Beurteilung Dichtigkeit	Entscheid, ob Massnahmen zur Verbesserung der Dichtigkeit notwendig sind. ► Dicht → Prüfprotokoll (B) ► Undicht → Weiter mit C ► Unsicher → Zurück zu A3	Zulässige Verluste _Δ H _{14h} < 25 mm (Eine Bentonitmatte wird als dicht beurteilt, wenn k ≤ 5 x 10 ⁻⁷ m/s): «In 14 h ist eine Wasserspiegelsenkung von bis 25 mm zulässig»		

Tabelle 3: Angepasste Arbeitsschritte bei einer Dichtigkeitsprüfung für mit Schilf bewachsene Retentionsfilterbecken.

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

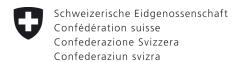
Bundesamt für Strassen ASTRA

Filiale Zofingen

Prüfprotokoll A

Dichtigkeitsprüfung- Schieber /

Informationen zum Bauwerk
Bezeichnung Bauwerk:
Inventarobjekt-Nr.
Informationen Prüfingenieur
Unternehmung:
Verantwortlicher Bauleiter/Ingenieur Dichtigkeitsprüfung:
E-Mail:


Protokoll:

Datum	Schieberbezeichnung	Prüfverfahren	Resultat / Massnahme

Ort / Datum

Für das Protokoll:

Firmenbezeichnung / Name verantwortlicher Bauleiter /Ingenieur

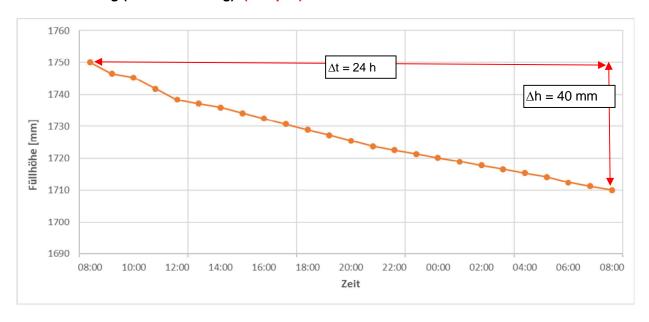
Informationen zur SABA Bezeichnung SABA:

Inventorabiekt Nr

Bezeichnung geprüftes Anlagenteil:

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Strassen ASTRA


Filiale Zofingen

Prüfprotokoll B

Dichtigkeitsprüfung- RFB X / SABA XXXX

inventarobj	GKI-IVI.					
Informatic Unternehm Verantworth E-Mail:	ung:		r Dichtigkeits	prüfung:		
Resultat D		sprüfung				
kf [m/s]:	[
Dichtigkeits	prüfung bes	standen:				
Massnahm	en:					
Havariefall:						
Protoko	II:					
Datum	Zeit	Niveau 1	Niveau 2	Niveau Verd.	Beschrieb	Resultate/Kommentar

Niveaumessung (Online-Messung): (Beispiel)

Berechnung Verlustrate [mm/24h]:

40mm / 24h

Berechnung k_f – Wert [m/s]:

 $5 \times 10^{-7} \, \text{m/s}$

Fotos Dichtigkeitsprüfung (Beispiel)

22.5.2019 16:30 Uhr: Niveau: Messlatte RFB 1 (links) und Referenzbehälter (rechts).

23.5.2019 08:30 Uhr: Niveau: Messlatte RFB1 (links) und Referenzbehälter (rechts).

Ort / Datum

Für das Protokoll:

Firmenbezeichnung / Name verantwortlicher Bauleiter/Ingenieur