Bundesamt für Strassen

Dokumentation

Bereich Kunstbauten

„Steinschlag“: Naturgefahr für die Nationalstrassen

Überprüfung der bestehenden Galerien

Generelle Überprüfungen

Ausgabe 2004
Dokumentation

„Steinschlag“: Naturgefahr für die Nationalstrassen

Überprüfung der bestehenden Galerien

Generelle Überprüfungen

Impressum

Autor(en)
Joseph Jacquemoud, Ing. dipl. EPFL, Dr. sc. techn., Bureau Dr. Jean Pralong + Ass. sa, Sitten
Raphael Mayoraz, Geol. dipl. UNIFR, Dr. sc. EPFL, Kanton VS und CREALP, Sitten

Expertenkollegium
Michel Donzel, Ing. dipl. ETHZ, ASTRA, Bern
Heinrich Figi, Ing. dipl. ETHZ, Tiefbauamt Kanton GR, Chur
Hugo Raetzo, Geogr. dipl. UNIFR, BWG, Biel
Willi Schuler, Ing. dipl. ETHZ, ASTRA, Bern

Herausgeber
Bundesamt für Strassen ASTRA, Abteilung Strasseninfrastruktur, Bereich Kunstbauten, 3003 Bern

Ort, Jahr
Bern, 2004

Zu beziehen als pdf – Download unter: www.astra.admin.ch

© „ASTRA“ 2004, Abdruck unter Angabe der Quelle gestattet
Inhaltsverzeichnis

1 ALLGEMEINER RAHMEN ...6
 1.1 EINLEITUNG...6
 1.2 GEGENSTAND UND ZIEL ...6
 1.3 BETEILIGTE ..6
 1.4 ABGRENZUNG DER BAUWERKE ...6

2 ÜBERPRÜFUNGSMETHODE ...6
 2.1 ABLAUF DER GENERELLEN ÜBERPRÜFUNG ...6
 2.2 PHASE A: Überwachungsdaten ...6
 2.3 PHASE B: Bestehen der Steinschlaggefahr ...6
 2.4 PHASE C: Stopp (vorzeitiger Abbruch der Überprüfung) ..6
 2.5 PHASE D: Beurteilung der Felswände ...6
 2.6 PHASE E: Bewerten der potentiellen Gefahr ...6
 2.7 PHASE F: Beurteilung der Galerie ...6
 2.8 PHASE G: Bewerten des bestehenden Schutzes ...6
 2.9 PHASE H: Überprüfung ...6
 2.10 PHASE J: Qualifikation der Situation ...6
 2.11 DOKUMENTE ..6

Anhang 1 : Ablaufdiagramm „Generelle Überprüfung“
Anhang 2 : Methode zur Beurteilung der Felswände, CREALP
Anhang 3 : Methodik zur Beurteilung der Galerie
1 ALLGEMEINER RAHMEN

1.1 EINLEITUNG

In der vorliegenden Dokumentation wird die Marschrouten für die Durchführung des ersten Schrittes – die generelle Überprüfung der Galerien – abgesteckt.

Für diese generellen Überprüfungen musste eine spezielle, teilweise qualitative Methode entwickelt werden. Daher wurde gemäss den Bestimmungen der Richtlinie SIA 462 / Ziff. 2.4 eine Validierung der Methode durch ein Expertenkollegium aus erfahrenen Ingenieuren und Geologen vorgenommen.

1.2 GEGENSTAND UND ZIEL

Bei den zu überprüfenden Bauwerken handelt es sich um die im Kostenstellenverzeichnis der Nationalstrassen erfassten Schutzgalerien gegen Lawinen bzw. gegen Steinschlag.

Ziel der vorgesehenen generellen Überprüfung ist die Beurteilung der bestehenden Schutzgalerien in Bezug auf die Angemessenheit des Verhältnisses zwischen den potenziellen Gefahren, denen Sie ausgesetzt sind, und der Widerstandsfähigkeit („Robustheit“), die sie tatsächlich aufweisen.

Diese Überprüfung soll es dem ASTRA ermöglichen, allfällige kritische Situationen zu erkennen und die Prioritäten für die notwendigen Massnahmen festzulegen.

Zur Überprüfung werden z.T. qualitative Verfahren herangezogen, um die oben genannten Ziele innert möglichst kurzer Zeit zu erreichen.

1.3 BETEILIGTE

Die geforderten generellen Überprüfungen werden von den Kantonen durchgeführt, welche die Bauherrschaft und Projektleitung innehaben.

In jedem Falle ist die Mitwirkung eines Geologen und eines Ingenieurs erforderlich. Der erforderliche Arbeitsumfang für die Überprüfung einer Galerie wird auf durchschnittlich 1 Arbeitstag für den Ingenieur und 2 Arbeitstage für den Geologen festgesetzt, ungeachtet der allfällig erforderlichen Zeit zur Beschaffung der entsprechenden Unterlagen, sowie zur Absprache mit dem Bauherrn.

Die Zahl der Fachleute muss auf ein Mindestmass von 1 bis 2 Teams „Geologe - Ingenieur“ pro Kanton beschränkt werden, um höchstmögliche Kohärenz und Homogenität in der Beurteilung zu gewährleisten.

1.4 ABGRENZUNG DER BAUWERKE

Unter der Bezeichnung „Galerie“ wird in der vorliegenden Dokumentation ein Streckenabschnitt verstanden, der hinsichtlich des Tragwerkes und der Art des Gefahrenpotenzials der Felswand homogen ist. Es kann daher erforderlich sein, für ein Bauwerk, das unter einer einzigen Nummer im Verzeichnis eingetragen ist, eine Aufteilung in mehrere unterschiedliche Abschnitte vorzunehmen.
2 ÜBERPRÜFUNGSMETHODE

2.1 ABLAUF DER GENERELLEN ÜBERPRÜFUNG

Die Überprüfung ist gemäss dem Flussdiagramm in Anhang 1 durchzuführen. Die in diesem Diagramm festgelegten Phasen werden im Folgenden näher ausgeführt und erläutert.

2.2 PHASE A: Überwachungsdaten

Beteiligte : Bauherr (Kanton / Leiter Kunstbauten)
Grundlagen : Bauakten; KUBA-DB
Erläuterungen :

Der Bauherr stellt für jedes zu prüfende Bauwerk sämtliche Unterlagen zusammen und stellt sie dem Ingenieur und Geologen zur Verfügung:

1. Art des Tragwerks: Bauwerksskizze A3 oder A4
2. Zustand des Tragwerks: Bericht der letzten Hauptinspektion und ggf. Bericht(e) über erfolgte Überprüfung(en)
3. Sicherheitsplan / Nutzungsvereinbarung: Verfügbare Daten über die Projektbasis hinsichtlich der Einwirkungen, die bei der Dimensionierung berücksichtigt wurden; ggf. diesbezügliche Auszüge aus den Berechnungsunterlagen des Planungsbeauftragten
4. Sämtliche verfügbaren Daten über eingetretene oder mögliche Ereignisse, z.B. Katasterauszüge, Unfallberichte, interne Notizen, Fotos und Gefahrenkarten

2.3 PHASE B: Bestehen der Steinschlaggefahr

Beteiligter : Geologe
Grundlagen : Durch den Bauherrn zur Verfügung gestellte Unterlagen
Begehung
Erläuterungen :

Feststellung, ob eine Steinschlagaktivität, deren Intensität für den Bruchwiderstand massgebend sein könnte, gegeben oder potenziell gegeben ist.

Bei massiven Lawinenschutzgalerien z.B. stellen Ereignisse, die dem freien Fall von 50 kg-Steinblöcken aus 50 m Höhe oder 100 kg aus 20 m Höhe entsprechen, keine kritische Belastung dar.

Ebenso entsprechen große Steinblöcke, die auf einem Berghang mittlerer oder geringer Neigung rollen oder rutschen, keiner kritischen Belastung.
2.4 PHASE C: Stopp (vorzeitiger Abbruch der Überprüfung)

Beteiligte: Ingenieur und Bauherr

Grundlagen: Ergebnis der Phase B

Erläuterungen:

Sofern für eine Galerie keine kritische Steinschlagaktivität gegeben ist, wird die Überprüfung an dieser Stelle abgebrochen.

Dieses Ergebnis ist in jedem Fall in der Datenbank KUBA-DB sowie in den Bauakten zu dokumentieren.

2.5 PHASE D: Beurteilung der Felswände

Beteiligter: Geologe

Grundlagen:
- Durch den Bauherrn zur Verfügung gestellte Unterlagen
- Begehung und Erhebungen vor Ort
- Eigene Unterlagen des Geologen

Erläuterungen:

Die geforderte Beurteilung muss systematisch erfolgen, hat jedoch den Charakter einer Vorbeurteilung.

Wenn bereits eine zuverlässige und repräsentative Beurteilung der Felswand existiert, entfällt die vorliegende Phase. Es kann direkt zu Phase E übergegangen werden, der Charakterisierung der potentiellen Gefahren gemäss den Kriterien in Anhang 4.

Es geht hier in erster Linie darum, Situationen zu erkennen, in denen ein krasses Missverhältnis in der Grössenordnung zwischen der Gefahr ausgehend von der Felswand und dem Widerstand des Schutzbauwerks besteht. Sofern das der Fall ist, muss in einer späteren detaillierten Überprüfung eine gründliche und umfassende Beurteilung der Felswände vorgenommen werden.

Da es sich nicht um eine detaillierte Untersuchung handelt, soll diese Beurteilung nicht durch übermäßige Vorsicht, sondern durch charakteristische und vernünftige Einschätzung gekennzeichnet sein. Die möglichen Ereignisse werden durch ihre Eintretenswahrscheinlichkeit und Intensität unterschieden.

Die Beurteilungsmethodik, die festzulegenden Elemente sowie die Art, wie die bereits bestehenden Schutzmassnahmen zu berücksichtigen sind, können der in Anhang 2 niedergelegten Methode des CREALP entnommen werden.

2.6 PHASE E: Bewerten der potentiellen Gefahr

Beteiligter: Geologe

Grundlagen:
- Ergebnis der Phase D
- Diagramm "potentielle Gefahr" (Anhang 4)
Erläuterung:

Der „Intensitätsfaktor“ FI (Einheit [kg.m / s.m]) ist als neuer Parameter definiert worden, um die Intensität zu charakterisieren. Dieser Faktor wird an Stelle des üblichen Parameters « Energie » (Einheit [kJ]) verwendet, weil der Zusammenhang zwischen Energie und Anprallkraft nicht eindeutig ist.

Der Geologe begründet die Klassifizierung durch eine knappe Erläuterung.

2.7 PHASE F: Beurteilung der Galerie

Beteiligter:
Ingenieur

Grundlagen:
Durch den Bauherrn zur Verfügung gestellte Unterlagen
Begehung des Bauwerks und des Ortes

Erläuterung:
Ziel der Beurteilung der Galerie ist die Charakterisierung ihres Bruchwiderstandes unter vertikaler Last mit Hilfe globaler Parameter.

Massgebend bei der Auswahl der verwendeten Parameter war die Eignung zur Darstellung des Bruchverhaltens der Tragwerke (ihrer „Robustheit“) bei Einschlagsereignissen.

Die Beurteilungsmethodik, sowie die abzuschätzenden Parameter sind in Anhang 3 niedergelegt.

Dazu sind weder das Studium der Ausführungspläne noch statische Berechnungen erforderlich.

2.8 PHASE G: Bewerten des bestehenden Schutzes

Beteiligter:
Ingenieur

Grundlagen:
Ergebnis der Phase F
Diagramm "Robustheit der Galerie", Anhang 4

Erläuterungen:

Der Ingenieur begründet die Klassifizierung mit einer knappen Erläuterung.

2.9 PHASE H: Überprüfung

Beteiligte:
Geologe und Ingenieur

Grundlagen:
In der Phase E erstelltes Bewerten der potentiellen Gefahr
In der Phase G erstelltes Bewerten des bestehenden Schutzes
Diagramm "Absorptionsvermögen", Anhang 4
Überprüfung der bestehenden Galerien

Die potentiellen Gefahrenklassen (Klassen A bis J) und die Robustheit der bestehenden Galerie (Klassen I bis IV) werden einander gegenübergestellt, um die Schutzwirkung der Galerie zu bestimmen.

Im Diagramm «Absorptionsvermögen» von Anhang 4 wird jeder Robustheitsklasse das maximale Er- eignis zugeordnet, für das die Galerie einen wirksamen Schutz bietet. Dabei geht es um die Größen- ordnungen.

Die Beurteilung ist gemeinsam vom Geologen und vom Ingenieur kurz zu begründen. Die Berücksichti- gung eventueller günstigen oder ungünstigen Aspekte bei der Beurteilung der möglichen Gefahr und der Robustheit der Galerie sind zu erwähnen.

2.10 PHASE J: Qualifikation der Situation

Beteiligte: Geologe, Ingenieur und Bauherr

Grundlagen: Ergebnisse der Bewertung und der Überprüfung

Erläuterungen:

Die vorliegende Methodik ist zur Überprüfung einer Bauwerkspopulation gedacht.

Der Geologe und der Ingenieur erstellen zunächst für jede Galerie einen Vorschlag zur Qualifizierung der Situation sowie einen generellen Vorschlag für das weitere Vorgehen. Diese Vorschläge werden anschliessend mit dem Bauherrn besprochen (Ingenieur + Kantonsgeologe).

Die Qualifizierung der Situation wird anhand folgender Kriterien und Beschreibungen abgegeben:

- gut / annehmbar: Situation, bei der das Absorptionsvermögen gemäss Diagramm in Anhang 4 deutlich, angemessen, oder knapp genügend ist.
- schadhaft: Situation, bei der das Absorptionsvermögen um eine oder zwei Gefahrenklassen zu tief ist.
- schlecht / alarmierend: Situation, bei der das Absorptionsvermögen um drei oder mehr Gefahrenklassen ungenügend ist.

Der Bauherr erstellt anschliessend mit der Unterstützung der Beauftragten eine Liste der Prioritäten auf der Grundlage der durchgeführten Qualifizierung. In dieser Liste weist er auf die bereits projektierten oder in Ausführung befindlichen Massnahmen hin.

Wenn die Situation als „schlecht / alarmierend“ eingestuft wird, haben die zu ergreifenden Massnahmen hohe oder höchste Dringlichkeitsstufe. Bei bedeutenden Mängeln und hoher Häufigkeit der Gefährdung ist die Situation alarmierend. Dringende Massnahmen sind anzuordnen.

Bei den Massnahmen von hoher Dringlichkeit handelt es sich im Wesentlichen um aktive Eingriffe in der Feldswand, Überwachungsmassnahmen oder Verkehrsbeschränkungen. Diese müssen sofort eingelei- tet werden und das ASTRA muss darüber möglichst rasch informiert werden.
2.11 DOKUMENTE

Folgende Dokumente sind zu erstellen:

- Angaben über das beurteilte Bauwerk bzw. den Bauwerksabschnitt (Nr. und Kennzeichen, Skizze A4, bei der Bemessen zugrundegelegte Lasten)
- alle vom Geologen abzuliefernde Dokumente gemäss Anhang 2 für die Phasen D und E
- Begründung des Ingenieurs zur Einschätzung und Klassifizierung der Galerie gemäss Phase G (eine Seite A4 sowie Diagramm aus Anhang 4)
- abschliessende Qualifizierung der Situation in Absprache mit dem Bauherrn gemäss Phase J, mit Vorschlägen für das weitere Vorgehen
- zusammenfassende Liste mit den Massnahmenprioritäten, sowie der Art der vorzuziehenden Schutzmassnahmen.

Der Kanton hat dem ASTRA folgende zusammenfassende Dokumente zu übergeben:

- Angaben zur Identifikation der Bauwerke
- Bauwerksskizze A3 oder A4 für jedes Bauwerk
- Diagramme gemäss Anhang 4 für jedes Bauwerk (Ergebnis der Beurteilung)
- Liste mit der Bewertung von allen Bauwerken mit Vorschlägen des Kantons für das weitere Vorgehen.

Sitten / Bern, den 8. Juli 2004

Anhang 1: Ablaufdiagramm „Generelle Überprüfung“
Anhang 2: Methode zur Beurteilung der Felswände, CREALP
Anhang 3: Methodik zur Beurteilung der Galerie
Anhang 1

Ablaufdiagramm „Generelle Überprüfung“
GENERELLE ÜBERPRÜFUNG

B

Besteht Steinschlag-Gefahr?

JA

C

NEIN

STOP

A: Überwachungsdaten

1 Art des Tragwerks (Bauwerksskizze A4)
2 Zustand des Tragwerks
3 Sicherheitsplan / Nutzungsvereinbarung
4 bekannte Ereignisse
5 Sonstiges

D: Beurteilung der Felswände

1 Steinschlagsart
2 Abgrenzung des exponierten Bereichs
3 Intensität und Häufigkeit
 (Grössenordnung)
 vgl. Anhang 2

E: Bewertung der potentiellen Gefahr

1 Charakterisierung der potentiellen
 Gefahr gemäss Diagramm
2 Erläuterung des Geologen
 vgl. Anhang 4

F: Beurteilung der Galerie

1 Typ der Galerie
2 Dicke der Eindeckung
3 Einwirkungen / massgeb. Gefährdungs- bild
 bei der ursprünglichen Bemessung
 vgl. Anhang 3

G: Bewertung des bestehenden Schutzes

1 Charakterisierung der "Robustheit"
 gemäss Diagramm
2 Erläuterung des Ingenieurs
 vgl. Anhang 4

H: Überprüfung

1 Beurteilung des "Absorptions-
 vermögens" gemäss Diagramm
2 Abstimmung Ing. ÷ Geologe
 vgl. Anhang 4

J: Qualifikation der Situation

1 Qualifikation der Situation:
 gut / annehmbar - mangelhaft -
 - schlecht / alarmierend
2 Vorschlag für das weitere
 Vorgehen
Anhang 2

Methode zur Beurteilung der Felswände, CREALP
Phase D: Beurteilung von Felswänden

1. Literatur

2. Bemerkungen zur Terminologie

• Der Begriff "Stein" umfasst Steine sowie Blöcke.
• Aus praktischen Gründen wird die Grenze zwischen Steinschlag und Bergsturz auf 100 m³ festgesetzt.
• Die Fachausdrücke entsprechen dem Lexikon des Crealps, das unter www.crealp.ch abgerufen werden kann.

3. Theoretische Grundlagen

Die theoretischen Grundlagen des Verfahrens basieren hauptsächlich auf Methoden der Grundlagen [2 und 3]. Die Bestimmung der potentiellen Gefahr eines Ereignisses, wie in Phase E durchgeführt wird, erfordert folgende Erläuterungen:

• Gefährlichkeit (auch unter "Auslösewahrscheinlichkeit" oder "Bruchwahrscheinlichkeit" in der Literatur anzutreffen): Wahrscheinlichkeit, dass sich Blöcke von der Felswand lösen oder in einem Hang zum Rollen gebracht werden (Remobilisation)
• Treffwahrscheinlichkeit: Wahrscheinlichkeit, dass ein oder mehrere Blöcke die Galerie erreichen
• Eintretenswahrscheinlichkeit ist eine Kombination von Gefährlichkeit und Treffwahrscheinlichkeit
• Die Intensität ist die Energie der Blöcke, die die Galerie erreichen, ausgedrückt in Geschwindigkeit mit Angabe des mittleren Radius der Blöcke, für die spezifischen Anforderungen zur Überprüfung der Galerien.

Die Kombination von Eintretenswahrscheinlichkeit und Intensität ermöglicht die Beurteilung der Gefährdungsgrades

Anders ausgedrückt:

Ermittlung der Eintretenswahrscheinlichkeit

\[
\text{Gefährlichkeit des Ereignisses} \quad + \quad \text{Treffwahrscheinlichkeit (Galerie)} \quad = \quad \text{Eintretenswahrscheinlichkeit des Ereignisses bezüglich der Galerie}
\]

Ermittlung der Gefahr

\[
\text{Eintretenswahrscheinlichkeit} \quad + \quad \text{Intensität des Ereignisses auf der Galerie} \quad = \quad \text{Gefährdungsgrad des Ereignisses bezüglich der Galerie}
\]
4. Verfahren

4.1. Geologische Grundlagen

Eine kurze Beschreibung der Lithologie der Felswand ist notwendig.

4.2. Gefüge- und Geomechanikanalyse

Die Gefüge- und Geomechanikanalyse ist für jede Felswand notwendig.

Es handelt sich dabei um die Untersuchung der Schichtung, der Trennflächen, etc. einer Felswand. **Einzig die wichtigsten Trennflächen bezüglich Instabilität werden beschrieben.** Die Charakteristiken werden in Form einer Tabelle dargestellt (vgl. untenstehende Tabelle):

<table>
<thead>
<tr>
<th>Familie</th>
<th>Azimut</th>
<th>Fallen</th>
<th>Seitliche Ausdehnung [m]</th>
<th>Abstand [m]</th>
<th>Öffnung [mm]</th>
<th>Ondulation</th>
<th>Rauhigkeit</th>
<th>Kluftfüllung / Wasser</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>279-330</td>
<td>16-20</td>
<td>50</td>
<td>5</td>
<td>8</td>
<td>100</td>
<td>Schwach</td>
<td>Kein</td>
<td>Stark verwittert</td>
</tr>
<tr>
<td>J₁</td>
<td>040-060</td>
<td>55-90</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>1000</td>
<td>Mittel</td>
<td>Erde</td>
<td>Zerklüftet stark den Fels</td>
</tr>
</tbody>
</table>

Erforderliche Dokumente:
- Tabelle mit der Beschreibung der Strukturen: nur die wichtigsten Parameter, die zum Loslösen von Blöcken führen können, werden hier beschrieben
- Schmidt-Lambert Stereogramm (obere Halbkugel) mit den wichtigsten Strukturen, der Orientierung der Topographie und den wichtigsten Gleitkeilen
- eventuell, für die gefährlichsten Situationen, einen Kurzkommentar zu den wichtigsten möglichen Gleitkeilen, Gleitflächen oder Kippflächen.

Bemerkungen:
Falls der Zugang zur Felswand erschwert ist, wird die Beobachtung aus der Ferne gemacht.

4.3. Ereignis und Gefährlichkeit

Die zu beschreibenden Ereignisse sind:
- Punktuelle Ereignisse: leicht ausscheidbare Felsabschnitte, die abbruchgefährdet sind
- Diffuse Ereignisse: Felswand bestehend aus kleinen instabilen Felsabschnitten mit vergleichbaren Volumen, Auslösemechanismen und Gefährlichkeiten, deren Ausscheidung zu kompliziert wäre
- Abschnitte mit grossen Volumen, die einen Berg- oder Felssturz verursachen könnten.

Die Charakteristiken der Ereignisse sind in Tabellenform darzustellen (vgl. untenstehende Tabelle).
Es werden folgende Auslösemechanismen unterschieden: tiefgründige Rutschung,oberflächliche Rutschung entlang einer oder mehreren Gleitflächen (Gleitkeile), Kippung, Abbruch eines Überhanges, Remobilisation von Blöcken, Setzungen, Knicken, etc.

Die Beurteilung der Gefährlichkeit der Ereignisse muss folgende Parameter berücksichtigen:
Trennflächenmuster, Steinschlagaktivität (durch Feldbeobachtungen und/oder Ereigniskataster), Verwitterung der Trennflächen und der Felskompartmente, Faktoren die den Auslösemechanismus begünstigen (Wasser, Frost, etc.), etc.

Bei diffusen Ereignissen werden die beobachteten oder vermuteten Frequenzen von Ereignissen berücksichtigt. Diese Frequenzen ermöglichen die Bestimmung der Gefährlichkeit:

- Frequenz < 5 Jahre hohe Gefährlichkeit
- 5 Jahre < Frequenz < 100 Jahre mittlere Gefährlichkeit
- 100 Jahre < Frequenz geringe Gefährlichkeit

Achtung: Diese Grenzen sind für diese Untersuchung der Galerien spezifisch. Sie entsprechen den Bundesempfehlungen, die Wiederkehrperioden von 30, 100 und 300 Jahren vorsieht [1], nicht. Die Wahl der Grenze von 5 Jahren basiert auf die Frequenz der Kontrollen der Schutzbauten gemäss den Richtlinien des ASTRA.

Erforderliche Dokumente:
- Tabelle mit den Beschreibungen der Ereignisse: die Informationen aus dieser Tabelle sind ausreichend
- Karte der Ereignisse mit Untersuchungsperimeter
- Fotos mit panoramischen Ansichten und Lokalisierung der Ereignisse
- Fotos der wichtigsten Ereignisse.

4.4. Treff- und Eintretenswahrscheinlichkeit, Intensität

Die **Treffwahrscheinlichkeit** beruht auf Feldbeobachtungen (herabgestürzte Blöcke) und einer Abschätzung der möglichen Ausbreitung der Blöcke. Demzufolge muss ein repräsentativer Dimensionierungsblock sorgfältig ausgewählt werden, um jegliche Überschätzung der Ausbreitung und der damit verbundenen Intensität des Ereignisses zu vermeiden.

Die Beurteilung der Treffwahrscheinlichkeit berücksichtigt folgende Punkte:
- Das Zerbrechen der Blöcke beim Aufschlagen
- Art und Alter der Schutthalden oberhalb der Galerie (Aktivität, Blockgrössen, etc.)
- Energiedämpfung durch das Terrain, auf dem die Blöcke aufschlagen
- Vorhandener Wald (Zustand und Dichte des Waldes, Stammdurchmesser, Baumarten)
- Sturzbahn, Lage, Volumen und Form der bereits herabgestürzten Blöcke
- Räumliche Verteilung und Art der Einschläge auf Boden und Bäumen
- Vorhandene Schutzbauwerke; Beschreibung der Bauwerke sowie eine Beurteilung der Effizienz ist dann notwendig.
Auf Grund der geringen Zeit, die für die Untersuchungen zur Verfügung steht, sieht die generelle Überprüfung der Galerien keine numerischen Sturzbahnanalysen zur Bestimmung der Ausbreitung vor. Diese Methode ist für eine detaillierte Überprüfung vorgesehen.

Die Eintretenswahrscheinlichkeit wird für jedes Ereignis aufgrund der Gefährlichkeit und der Treffwahrscheinlichkeit gemäß folgender Tabelle bestimmt:

<table>
<thead>
<tr>
<th>Treffwahrscheinlichkeit</th>
<th>Mobilisierungswahrscheinlichkeit (Gefährlichkeit eines Ereignisses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hoch</td>
<td>hoch mittel gering</td>
</tr>
<tr>
<td>mittel</td>
<td>mittel gering -</td>
</tr>
<tr>
<td>gering</td>
<td>gering - - - -</td>
</tr>
</tbody>
</table>

Die Intensität wird dank den beobachteten Schäden und/oder einfachen Berechnungen unter Berücksichtigung der Masse der Blöcke (Wahl eines geeigneten Dimensionierungsblocks erforderlich), der Fallhöhe und falls kein freier Fall eines Energieabminderungsfaktors (Reibungskoeffizient) abgeschätzt. Der Dimensionierungsblock ist derselbe wie für die Beurteilung der Treffwahrscheinlichkeit.

Auf Grund der geringen Zeit, die für die Untersuchungen zur Verfügung steht, sieht die generelle Überprüfung der Galerien keine numerischen Sturzbahnanalysen zur Bestimmung der Intensität vor. Diese Methode ist für eine detaillierte Überprüfung vorgesehen.

Für die generelle Überprüfung der Galerien und um den Gefährdungsgrad mit der Robustheit der Galerie zu kombinieren, wird die Intensität mit dem Intensitätsfaktor, der die Geschwindigkeit, den Einschlagswinkel bezüglich der Galerie und den mittleren Radius des Blockes berücksichtigt, ausgedrückt. Folgendes Verfahren muss angewendet werden:

1. Berechnung der Energie E des Dimensionierungsblocks auf der Höhe der Galerie:
 \[E = mghf \] [kJ]
 - m = Blockmasse [t]
 - g = 9.81 [m/s2]
 - h = Fallhöhe [m]
 - f = Reibungskoeffizient (bei freiem Fall = 1, ansonsten 0.9, 0.8, ...).

2. Berechnung der vertikalen Geschwindigkeit V_z des Blockes auf der Höhe der Galerie:
 \[E = \frac{1}{2} m V_z^2 \] [kJ]
 \[V = \sqrt{\frac{2E}{m}} \] [m/s]
 \[V_z = V \sin \alpha \] [m/s]
 - V =Translationsgeschwindigkeit [m/s]
 - α = Einschlagswinkel des Blockes auf der Galerie bezüglich Horizontale (90° falls senkrechter Fall) [°]. Dieser Winkel berücksichtigt den Dachwinkel der Galerie nicht.
3. Berechnung des Intensitätsfaktors FI:

$$\text{FI} = \frac{mV_z}{r}$$

$r =$ mittlerer Radius des Dimensionierungsblockes [m]

Die Intensitätsfaktoren werden in 3 Gruppen unterteilt:

- $\text{FI} > 55$ → stark
- $20 < \text{FI} < 55$ → mittel
- $\text{FI} < 20$ → schwach

Für Intensitätsfaktoren grösser als 100 bis 110 stellen Galerien in der Regel keine wirksame und zweckmässige Schutzmassnahmen dar.

Für Bergstürze ist der Intensitätsfaktor immer sehr hoch.

Gegebenenfalls müssen bei der Bewertung der Intensität bestehende Schutzbauwerke berücksichtigt werden. Diese müssen beschrieben und deren Wirksamkeit bewertet werden.

Erforderliche Dokumente:

- Beschreibung der Feldbeobachtungen (Fotos) und Erläuterungen zur Treffwahrscheinlichkeit
- Falls signifikant, Fotos und Karte mit den Einschlägen und den herabgestürzten Blöcken
- Gegebenenfalls Erläuterungen zur Beurteilung der Eintretenswahrscheinlichkeit
- Gegebenenfalls Erläuterungen und Fotos zu beobachteten Schäden und Konsequenzen für die Abschätzung der Intensität
- Abschätzung des Intensitätsfaktors in Tabellenform (vgl. untenstehende Tabelle)
- Abschätzung der Treffwahrscheinlichkeit, der Eintretenswahrscheinlichkeit und des Intensitätsfaktors für alle potentielle Gefahren (GP) in Tabellenform (vgl. untenstehende Tabelle).

Beispiel einer Tabelle zur Abschätzung des Intensitätsfaktors:

<table>
<thead>
<tr>
<th>Ereignis</th>
<th>Dimensionierungsblock ([\mathrm{m}^3])</th>
<th>Masse ([\mathrm{t}])</th>
<th>Fallhöhe ([\mathrm{m}])</th>
<th>Reibungskoeffizient</th>
<th>Einschlagswinkel ([^\circ])</th>
<th>Mittlerer Radius ([\mathrm{m}])</th>
<th>Energie ([\mathrm{kJ}])</th>
<th>Vertikale Geschwindigkeit ([\mathrm{m/s}])</th>
<th>Intensitätsfaktor</th>
<th>Intensität</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2</td>
<td>5.4</td>
<td>20</td>
<td>0.9</td>
<td>70</td>
<td>0.8</td>
<td>953</td>
<td>17.6</td>
<td>119.20</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>0.25</td>
<td>0.675</td>
<td>7</td>
<td>0.8</td>
<td>55</td>
<td>0.4</td>
<td>37</td>
<td>8.6</td>
<td>14.50</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>1</td>
<td>2.7</td>
<td>10</td>
<td>1</td>
<td>45</td>
<td>0.65</td>
<td>265</td>
<td>9.9</td>
<td>41.14</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel einer zusammenfassenden Tabelle für jedes Ereignis:

<table>
<thead>
<tr>
<th>Ereignis</th>
<th>Gefährlichkeit</th>
<th>Treffwahrscheinlichkeit</th>
<th>Eintretenswahrscheinlichkeit</th>
<th>Intensitätsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>gering</td>
<td>mittel</td>
<td>gering</td>
<td>hoch</td>
</tr>
<tr>
<td>R4</td>
<td>mittel</td>
<td>hoch</td>
<td>mittel</td>
<td>gering</td>
</tr>
<tr>
<td>R5</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch</td>
<td>mittel</td>
</tr>
</tbody>
</table>
Phase E: Bewerten der potentiellen Gefahr

1. Einführung
Die Literatur, die Terminologie sowie die theoretischen Grundlagen sind unter Phase D beschrieben (vgl. Phase D: Kapitel 1, 2, 3).

2. Verfahren
2.1. Expositionsgrad
Die Gefahr, die jedes Ereignis auf Höhe der Galerie darstellt, wird durch den Intensitätsfaktor und die Eintretenswahrscheinlichkeit gemäss untenstehendem FI/EW-Diagramm bestimmt.
Da spezifische Parameter und Grenzwerte für die Beurteilung der Galerien verwendet werden, wird der Ausdruck „Gefährdungsgrad“ durch „Expositionsgrad“ ersetzt.

Intensitätsfaktor/Eintretenswahrscheinlichkeit-Diagramm (FI / EW)

<table>
<thead>
<tr>
<th>Intensitätsfaktor</th>
<th>Eintretenswahrscheinlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwach</td>
<td>Hoch</td>
</tr>
<tr>
<td>Mittel</td>
<td>Mittel</td>
</tr>
<tr>
<td>Stark</td>
<td>Gering</td>
</tr>
</tbody>
</table>

Erforderliche Dokumente:
- Intensitätsfaktor/Eintretenswahrscheinlichkeit-Diagramm gemäss Anhang 4, mit Positionierung der Ereignisse.

2.2. Potentielle Gefahrenklasse
In Hinsicht auf eine Bestimmung der Schutzwirkung der bestehenden Galerie, wird der Expositionsgrad, der durch das FI/EW-Diagramm für jede potentielle Gefahr bestimmt wurde, in potentiellen Gefahrenklassen gemäss untenstehende Matrix ausgedrückt:
Matrix zur Bestimmung der potentiellen Gefahrenklasse

Es wird jedem Ereignis eine potentielle Gefahrenklasse zugeordnet. Beispiel:

<table>
<thead>
<tr>
<th>Ereignis</th>
<th>Eintretenswahrscheinlichkeit</th>
<th>Intensitätsfaktor Fi</th>
<th>Gefahrenklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Gering</td>
<td>119.2</td>
<td>C</td>
</tr>
<tr>
<td>R4</td>
<td>Mittel</td>
<td>14.5</td>
<td>H1</td>
</tr>
<tr>
<td>R5</td>
<td>Hoch</td>
<td>41.1</td>
<td>D2</td>
</tr>
</tbody>
</table>

Erforderliche Dokumente:

2.3. Kommentare, Bemerkungen und Schlussfolgerungen

Die Feldbeobachtungen, die Bezeichnung der verschiedenen Parameter, die zur Bestimmung des Expositionsgrades und der potentiellen Gefahrenklasse dienen, erfordern einige Kommentare zur Begründung der Einteilung.

Als Schlussfolgerung wird eine generelle Gefahrenbeurteilung der Galerie angegeben. In diesem Kapitel werden die zusätzlichen vorhandenen Gefahren angegeben, wie z.B. Murgänge.
Anhang 3

Methodik zur Beurteilung der Galerie
Phase F: Methodik zur Beurteilung der Galerie

Mit „Robustheit“ wird die Fähigkeit der Galerie, Einschlägen von Steinblöcken standzuhalten, definiert. Die Robustheit wird als Funktion von zwei Parametern ausgedrückt:

- konstruktive Kapazität (CC)
- Widerstandsvermögen (CR)

Der Wert CC wird ermittelt durch die lineare Verknüpfung von zwei Unterparametern:

- Tragwerksklasse: CLS
- Überdeckungsklasse CLC

Die Bestimmung dieser Parameter und Unterparameter geschieht wie folgt:

a) Tragwerksklasse (CLS)

Hierbei handelt es sich um den Galerietyp aufgrund des Tragsystems:

- CLS = 3 : bei massiven Betonplatten, auf Mauern und Pfeilern, mit oder ohne Randträgern
 bei dicken armierten Gewölben
- CLS = 2 : bei dicken Platten auf Trägern in Beton, vorfabriziert oder nicht
 bei dünnen oder nicht armierten Gewölben
- CLS = 1 : bei vorfabrizierten Trägersystemen aus Beton oder Stahl, mit dünner Platte

Davon abweichende besondere Anordnungen oder Systeme sind durch den Ingenieur nach analogen Gesichtspunkten zu beurteilen. Im Falle bekannter Schwächen, insbesondere hinsichtlich der Duktilität des Tragwerks, ist die CLS bis um 1 Punkt zu reduzieren.

b) Überdeckungsklasse (CLC)

Diese hängt von der Dicke der Erdüberdeckung auf dem Dach ab:

- CLC = 3 : bei einer Erdüberdeckung mit einer durchschnittlichen Dicke über 1,0 m
- CLC = 2 : bei einer Erdüberdeckung mit einer durchschnittlichen Dicke zwischen 1,0 m und 0,50 m
- CLC = 1 : bei einer Erdüberdeckung mit einer durchschnittlichen Dicke von 0,50 m oder weniger.

Davon abweichende besondere Anordnungen oder Systeme sind durch den Ingenieur nach analogen Gesichtspunkten zu beurteilen.
c) **Konstruktive Kapazität (CC)**

Die CC wird wie folgt berechnet:

\[
CC = CLS + CLC
\]

Das Ergebnis wird wie folgt klassifiziert:

- grosse konstruktive Kapazität : \(CC > 4 \)
- durchschnittliche konstruktive Kapazität : \(CC = 4 \)
- geringe konstruktive Kapazität : \(CC < 4 \)

d) **Widerstandsvermögen (CR)**

Das CR wird aus den Einwirkungen Eigengewicht, Erdaulasten, sowie aus den anderen veränderlichen Einwirkungen, die der ursprünglichen Bemessung der Galerie zugrundegelegt wurden (im Wesentlichen vertikale Kräfte), berechnet.

Das CR wird definiert als

\[
CR = \max \{ (0.3 \ G_k + 0.3 \ G_{E_k} + 1.5 \ Q_k) ; (0.3 \ G_k + 0.5 \ G_{E_k} + 1.3 \ Q_k) \}
\]

dabei gilt:

- \(G_k \) : Charakteristischer Wert des Eigengewichtes
- \(G_{E_k} \) : Charakteristischer Wert der ständigen Auflasten
- \(Q_k \) : Charakteristischer Wert der veränderlichen Einwirkungen

Diese Einwirkungen sind als Lasten pro m² auszudrücken. Einzellasten \((Q_{konz})\) sind in äquivalente verteilte Lasten \((q_{verteilt})\) pro Längeneinheit mit identischem positivem Biegungsmoment im Feld umzurechnen.

So erhält man z.B. für eine Platte unendlicher Länge, mit einer Spannweite L, die durchgehend an beiden Rändern abgestützt ist, das Äquivalent:

\[
q_{verteilt} = (8 \times Q_{konz}) / (4 \times L^2)
\]

Das Ergebnis wird wie folgt klassifiziert:

- hoher Widerstandsvermögen : \(CR \geq 40 \text{ kN/m}^2 \)
- durchschnittlicher Widerstandsvermögen : \(15 < CR < 40 \text{ kN/m}^2 \)
- geringer Widerstandsvermögen : \(CR \leq 15 \text{ kN/m}^2 \)
Anhang 4

Diagramme „potentielle Gefahr“ – „Robustheit der Galerie“ – „Absorptionsvermögen“
Eine Galerie einer bestimmten Robustheit (I bis IV) bietet wirksamen Schutz vor potentiellen Gefahren ("X" bis J).

Robustheit IV schützt vor potentiellen Gefahren A bis J

Robustheit III schützt vor potentiellen Gefahren C bis J

Robustheit II schützt vor potentiellen Gefahren D bis J

Robustheit I schützt vor potentiellen Gefahren G bis J